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Abstract-A numerical analysis is made to analyze the thermal dispersion and inertia effects on the vortex 
mode of instability of a horizontal mixed convection boundary layer flow with a uniform free stream 
velocity in a saturated porous medium adjacent to a uniform heat flux surface. The stability analysis is 
based on the linear stability theory and the resulting eigenvalue problem is solved by the local similarity 
method. The critical Rayleigh number and the associated wave number at the onset of vortex instability 
are obtained for various KdUeS of thermal dispersion and inertia parameters. It is found that the thermal dis- 
persion elrcct stabilizes the flow to the vortex mode of disturbance, while the inertia effect destabilizes it. 

1. INTRODUCTION 

THE PROBLEMS of the vortex mode of instability in 
natural or mixed convection flow over a heated plate 
in a saturated porous medium have recently received 
considerable attention. This is primarily due to a large 
number of technical applications. such as fluid flow 
in geothermal reservoirs, separation processes in 
chemical industries, storage of radioactive nuclear 
waste materials, transpiration cooling, transport pro- 
cesses in aquifers, etc. The instability mechanism is 
due to the presence of a buoyancy free component in 
the direction normal to the plate surface. 

For natural convection boundary layer flow adjac- 
ent to a flat plate, Hsu et al. [I] and Hsu and Cheng 
[2] analyzed the vortex mode of instability of hori- 
zontal and inclined natural convection flows in a 
porous medium. Jang and Chang [3] re-examined the 
same problem for an inclined plate, where both the 
streamwise and normal components of the buoyancy 
force are retained in the momentum equations. Jang 
and Chang [4] studied the vortex instability of hori- 
zontal natural convection in a porous medium result- 
ing from combined heat and mass buoyancy effects. 
The effects of a density extremum on the vortex insta- 
bility of an inclined buoyant layer in porous media 
saturated with cold water were examined by Jang and 
Chang [5, 61. 

For mixed convection boundary layer flow adjacent 
to a flat plate, Hsu and Cheng [7] analyzed the vortex 
instability for horizontal mixed convection in a 
porous medium. By neglecting the normal component 
of buoyancy force, Cheng [8] showed that, in the main 
flow analysis, the mixed convection boundary layer 
flow over an inclined plate in a saturated porous 
medium can be approximated by the similarity solu- 

tion for a vertical plate, with the gravity component 
parallel to the inclined plate incorporated in the Ray- 
lcigh number. Following the same approach, Hsu and 
Cheng [9] applied a linear stability analysis to deter- 
mine the condition of onset of vortex instability for 
flow over an inclined surface. It is apparent that the 
instability results in ref. [9] are not valid for angles of 
inclination from the horizontal that are small. Thus, 
Jang and Lie [IO] provided new vortex instability 
results for small angles of inclination from the hori- 
zontal (I$ < 25 ) and more accurate results for large 

angles of inclination (4 > 25 ) than the previous 
study [9]. 

All of the works mentioned above are based on the 
Darcy formulation. However. at higher flow rates or 
in a high porosity medium, there is a departure from 
Darcy’s law and the inertia (velocity-squared term), 
thermal dispersion, convective (development term) 
and boundary (no-slip condition) effects not included 
in the Darcy model may become significant. Chang 
and Jang [I 1, 121 were the first authors to study the 
non-Darcy effects (inertia, boundary and convective 
effects) on the vortex instability ofa horizontal natural 
convection boundary layer flow in a saturated porous 
medium. One effect which has not been accounted 
for in refs. [I I, 121 is that due to transverse thermal 
dispersion. It has been shown that the thermal dis- 
persion effect may become very important when the 
inertial effect is prevalent [l3, 141. The thermal dis- 
persion effect on the vortex instability of a free or 
mixed convection boundary layer flow in a porous 
medium, to the authors’ knowledge, does not seem to 
have been investigated. This has motivated the present 
investigation. It should be noted that a related prob- 
lem for the onset of convection of the flow in a porous 
medium bounded by two horizontal impermeable 

383 



3x4 J.-Y. JANG and J.-L. CHEN 

NOMENCLATURE 

A constant in the wall temperature relation s, j: : axial, normal and spanwise 
a dimensional spanwise wave number coordinates. 
f  inertia parameter 
fi mean particle diameter or pore diameter Greek symbols 

y  

Ergun number, car,/& %I thermal diffusivity due to dispersion 
similarity stream function profile effect 
dimensionless disturbance stream ad effective thermal diffusivity 
function amplitude stagnant thermal diffusivity 

9 gravitational acceleration ; coefficient of thermal expansion 
I1 local heat transfer coeflicicnt Y dispersion coefficient 
k dimensionless wave number similarity variable 
K permeability z dimensionless temperature, 

ko stagnant conductivity (T-T,)I(T,-T,) 
Nu local Nusselt number, h/k, 0 dimensionless disturbance temperature 

P’ perturbation pressure amplitude 

P pressure i exponent on wall temperature relation 

PC, local Peclct number, II, S/LX,, 1’ absolute viscosity 

Rad Raylcigh number based on the pore v  kinematic viscosity 
diameter, Kg~Ac/“‘/a,v 5 mixed convection parameter, Pe;“‘/Ra, 

Ra, modified local Rayleigh number, P density 
Kg/Q T, - T, )s/aov stream function 

T temperature i, disturbance stream function 
T perturbation temperature tJ disturbance stream function amplitude. 
T disturbance temperature amplitude 
li s direction disturbance velocity Subscripts 

amplitude W condition at the wall 
u, 11, w volume averaged velocity in the s, ~1. CD condition at the free stream. 

z directions 
II’, VI, II” disturbance velocity in the .Y, JJ, z Superscript 

directions * critical condition. 

plates with an imposed vertical temperature gradient 
has been the subject of studies by Rubin [IS, 161, 
Neischloss and Dagan [17], Kvernvold and Tyvand 
[I 81 and Georgiadis and Catton [ 191. 

2. MATHEMATICAL FORMULATION 

Consider the problems of steady mixed convection 
in a semi-infinite porous medium bounded by a hori- 
zontal impermeable surface aligned parallel to a free 
stream with uniform velocity II, and temperature 
T,: where s represents the distance along the plate 
from its leading edge, and J’ the distance normal to 
the surface. The wall temperature is assumed to be a 
power function of .y, i.e. T, = T, + Ax”, where A and 
iL are constants. If  we assume that: (i) local thermal 
equilibrium exists between the fluid and solid phases ; 
(ii) the physical properties are considered to be 
constant, except for the density term that is associated 
with the body force ; and (iii) the Boussinesq approxi- 
mation is employed, then the governing equations are 
given by 

The purpose of this paper is to examine the thermal 
dispersion effect on the vortex instability of a hori- 
zontal mixed convection flow in a porous medium. 
Since both thermal dispersion and inertia are impor- 
tant at high Rayleigh numbers [ 131, they are included 
in this study. The boundary effect on the vortex insta- 
bility has been investigated in our previous papet [ 121, 
and is shown to stabilize the flow; this effect is 
neglected in the present study in order to obtain the 
similarity solution for the base flow [l4]. The analysis 
of the disturbance flow is based on the linear stability 
theory. The disturbance quantities are assumed to be 
in the form of a stationary vortex roll that is periodic 
in the spanwise direction, with its amplitude function 
depending primarily on the normal coordinate and 
weakly on the streamwise coordinate. The resulting 
eigenvalue problem is solved using a variable step-size 
sixth-order Runge-Kutta integration scheme in 
conjunction with the Grant-Schmidt orthogonal- 
ization procedure [20] to maintain the linear indepen- 
dence of the eigenfunctions. 

!z+d”=o 
ax aJl 

u+puu2=-_Kdl) 

F F ax 

1 (3) 
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where K is the permeability of the porous medium, p is 
the coefficient of thermal expansion, c is the transport 
property related to the inertia effect, tlcm is the effective 
thermal diffusivity which can bc expressed as: 

%lT = r,) + x,,, where 51” is the stagnant diffusivity and 
Q is the molecular diffusivity due to thermal disper- 
sion. The other symbols are defined in the Nomencla- 
ture. Here we adopt the following thermal dispersion 
model proposed by Plumb [2l]. that is 

u(J = yud (5) 

where ;’ is the dispersion coefficient, which has a value 
ranging from l/7 to l/3 and d is the mean particle 
diameter. 

The pressure terms appearing in equations (2) and 
(3) can be eliminated through cross-differentiation 
and subtraction. By applying the boundary layer 
assumptions and introducing the stream function I(/ 
which automatically satisfies equation (I), equations 
(l)-(4) become 

(7) 

The corresponding boundary conditions are 

I’ = 0, 1, = 0, T, = T, + Ax” 

J’-+ m, T = T, , u = 0 for free convection 

u = u, for mixed convection. 

(8) 

Lai and Kulacki [I41 have shown that similarity 
solutions for equations (6j-(8) exist only if 1= 0.5 
(i.e. constant heat flux). The suitable similarity vari- 
ables are as follows : 

Then the governing equations for the case flow are 

f”+Er(Ra,)*~‘[~/‘)*]‘+~ - ;O’ = 0 (10) 

:(f’O-f0’) = 0”+y(Rad)2/3(f0”+f”O’) (I 1) 

and the transformed boundary conditions are 

q = 0, O=l, j-=0 

y/+a), e=o, 1“=p (12) 

where 5 = Pe,:2/Ra,, is the mixed convection par- 
ameter; Pe, = Ucux/uO, the local Peclet number; 
Ra,y = Kg/l(T,- T=)x/or,v, the modified local Ray- 
leigh number; Rad = Kg&4d”-‘/cr,v, the Rayleigh 

number based on the pore diameter; and Er = cct,/dv, 
the dimensionless inertia parameter (Ergun number). 

It is noted that 5 is the mixed convection parameter, 
which measures the relative importance of forced to 
free convection; 5 = 0 corresponds to the case of 
purely free convection. y  and Er express the relative 
importance of thermal dispersion and inertia effects. 
respectively. As jr= Er = 0. equations (IO) and (I I) 
reduce to Darcy’s model. 

In terms of the dimensionless variables, it can be 
shown that the local Nusselt number is given by 

NU 
1T = -[I +y(Rad)2,3y(0)]0’(0). 
RL7, (13) 

The standard method of the linear stability theory is 
that in which the instantaneous values of the velocity, 
pressure and temperature are perturbed by small 
amplitude disturbances and the base flow equations 
are subtracted, with terms higher than first-order in 
disturbance quantities being neglected. Then we get 
the following disturbance equations : 

(14) 

(16) 

dT’ aT aT aT i- +fi- +u’- +v-- 
as ay ax ay 

+yd ;I;JI+UT+-7+tI7+udr’ 
(. 

d?T ad aT ,a*7 -S?T 

dJt- aJ’ OY aJ,- > 

(18) 

where the barred and primed quantities signify the 
base flow and disturbance components, respectively. 

Following the method of order-of-magnitude 
analysis prescribed in detail by Hsu and Cheng [2], 
the terms du’/dx, a2 T’/W in equations (14) and (18) 
can be neglected. The omission of au’/dx in equation 
(14) implies the existence of a disturbance stream 
function $’ such that 

We assume that the three-dimensional disturbances 
are of the form 

($‘, u’, T’) = [$(x,y), ii(x, yj, T(x, y)] exp (iaz+&)) 

(20) 
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where a is the spanwise periodic wave number, and 

s 
q(s) = a,(x) dx 

BJ =f-tf- B9 = O’J-” 

B, = I +2Er Rai”f’ Blo = O-t@‘. (28) 

Substitution of equation (25) into equation (26) 

with a,(s) denoting the spatial growth factor. For the 
lowest order approximation q(r) = ai.x. Setting a, = 0 
for neutral stability yields 

leads to 

‘I 1 

+A, 
2B,y Ra,- -B,,q B,y Ra,J” Err] 

4B, - Bi, 

-(l+Bzlj Rai”)(k’-B,B,) 

Equations (21)-(23) are solved based on the local 
similarity approximations [2], wherein the dis- 
turbances are assumed to have weak dependence in 
the streamwise direction (i.e. c-i/as c 8/&J). Intro- 
ducing the following dimensionless quantities 

+A,, k’+ 2 +y Ra$’ k’ 
> 

(k2 - B,B,J 

+B,k’Ra,?“-(l+B,y Ra$‘)B,B, 

(29) 

(24) with boundary conditions 

we obtain the following system of equations for the 
local similarity approximations 

F(0) = F”(0) = F(m) = F”(m) = 0 (30) 

F’-(I-B,ErRai” Ra;“‘)k’F= -Ra.ti3k0 where 

v-5) 
1 

( 

Ao = (1+FRm’ 
B = ,,+ Ra”3 Ray 113 k’ 

o d h 

(I + Bg Ra$‘)O”+ ; + B,y Raj” 0’ 
> 

Equations (29) and (30) constitute a fourth-order 
system of linear ordinary differential equations for the 

_ 
( 

k’+ ; +), Ra;/3 k’ @ = ;;;‘;;;,;7” 
> 

disturbance amplitude distribution F(q). For fixed 

5 r Ra,, 5, y  and Er, the solution F is an eigenfunction 
for the eigenvalues Ra, and k. 

+ 2B,k Ra:” - ( 

B,y Ra;” B,y Raj” Erq B,,q 
B:k Ra.!.” - 4B,k Ra.:” > 

F” 

+ B,k Ra,:” F (26) 
3. NUMERICAL METHOD OF SOLUTION 

with the boundary conditions In the stability calculations, the disturbance equa- 
tions are solved by separately integrating two linearly 

F(0) = O(0) = F(m) = O(m) = 0 (27) independent.integrals. The full solution may be writ- 

where the primes indicate the derivatives with respect 
ten as the sum of two linearly independent solutions 

to q. Equation (27) arises from the fact that the dis- 
F(q) = F, (9) + EF,(q). The two independent integrals 

turbances vanish at the wall and in the free stream in 
F,(q) and F2(q) may be chosen so that their asymp- 

the porous medium. The coefficients B,(q)-Blo(q) in 
totic solutions are 

the equations can be expressed as 

B, =.f B6 =.f”+qf” 

B2 =1” B, = 0 

B, =f” B, = O’+r$” 

4 h) = Next PA, F,(G) = exp OhA (31) 

where 

N = _ Rd” k 
I--A2 
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r= -I 
B”2 2 I + B,y R&3 + [ (] +[;,‘zRa;:‘J 

+ 
4(/c’+ B,/2+y Ru,~‘~ k’) “* 

1 + Bg Ra;‘-’ I> 
A = - (1 -B, Er Ru~‘~ Rn,; “3) “‘k. 

A sixth-order variable step size Runge-Kutta inte- 
gration routine is used here to solve first the base flow 
system, equations (10) and (1 I), and the results are 
stored for a fixed step size, API = 0.02, which is small 
enough to predict accurate linear interpolation 
between mesh points. Equation (29) with boundary 
conditions, equation (30), is then solved as follows. 
For specified Ra,, r, y, Er and k, Rczv is estimated. 
Using equation (31) as starting values, the two inte- 
grals are integrated separately from the outer edge of 
the boundary layer to the wall using a sixth-order 
Runge-Kutta variable step size integrating routine 
incorporated with the Gram-Schmidt orthogonal- 
ization procedure [20] to maintain the linear inde- 
pendence of the eigenfunctions. The required input of 
the base flow to the disturbance equations is calcu- 
lated, as necessary, by linear interpolation of the 
stored base flow. From the values of the integrals at 
the wall, E is determined using the boundary con- 
dition F(0) = 0. A Taylor series expansion of the 
second boundary condition F”(0) = 0 provides a cor- 
rection scheme for the initial estimate of Ra,. Iter- 
ations continue until the second boundary condition 
is sufficiently close to zero (< 10-6, typically). 

4. RESULTS AND DISCUSSION 

Numerical results for the tangential velocity, tem- 
perature profiles, Nusselt number, neutral stability 
curves, the critical Rayleigh number and wave number 
at the onset of vortex instability are presented for 
various values of thermal dispersion coefficient y  and 
inertia parameter Er with mixed convection parameter 
5 ranging from 0 to 10 and with Ra, = 20. 

Figures 1 and 2 show simultaneously the velocity 
and temperature profiles across the boundary layer 
for the selected values of y  (0, 0.15 and 0.3) and Er (0 
and 0.05) for 5 = 0 (purely free convection) and 1, 
respectively. The velocity profiles are referred to the 
left and lower axes, while the temperature profiles are 
referred to the right and upper axes. The dashed lines 
denote the results when the inertia effect is completely 
neglected (Er = 0). It should be noted that Darcy’s 
law [l, 7j corresponds to the case of y  = Er = 0. It is 
seen that both the thermal dispersion and inertia 
effects markedly affect the velocity and temperature 
profiles. We observe that the velocity increases with 
increasing values of the thermal dispersion coefficient 
y. As the inertia effect is considered (Er # 0). the 
magnitude of velocity near the wall decreases. These 
imply that thermal dispersion tends to enhance the 
heat transfer. while the inertia effect tends to reduce the 
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FIG. 1. Tangential velocity and temperature profiles across 
the boundary layer for selected values of y  and Er for < = 0 

(purely free convection). 

heat transfer. Figure 3 shows the alteration of Nusselt 
number with y  for various values of mixed convection 
parameter 5 and for Er = 0.05 and 0. It is seen that, 
as would be expected, the thermal dispersion effect 
increases the heat transfer rate, while the inertia effect 
decreases it. 

Figures 4 and 5 show the neutral stability curves, 
in terms of the Rayleigh number Ra, and the dimen- 
sionless wave number k for selected values of y  (0, 
0.15 and 0.3) for 5 = 0 (purely free convection) and 
1, respectively. It is observed that as y  increases, the 
neutral stability curves shift to a higher Rayleigh num- 
ber and a lower wave number, indicating a sta- 
bilization of the Row to the vortex instability. The 
neutral stability curves that were obtained by neglect- 
ing the inertia effect (Er = 0) are plotted with dashed 
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FIG. 2. Tangential velocity and temperature profiles across 
the boundary layer for selected values of y  and Er for 5 = I 

(mixed convection). 
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8- - Er = 0.05 
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FIG. 3. Alteration of Nu/Ra,i” with y  for various values 
org. 
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FIG. 4. Neutral stability curves for various values of y  for 
5 = 0 (purely free convection). 
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FIG. 5. Neutral stability curves for various values of y  for 
5 = I (mixed convection). 
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FIG. 6. Critical Rayleigh number as 2 function of y  for 
various values oft. 

lines in the figures for comparison. It is seen that when 
the inertia effect is considered, the neutral stability 
curves shift to a lower Rayleigh number and a lower 
wave number, indicating a destabilization of the flow. 

The critical Rayleigh number Ro: and wave num- 
ber k*, which mark the onset of longitudinal vortices, 
can be found from the minima of the neutral stability 
curves. The critical Rayleigh number and wave num- 
ber are plotted as functions of dispersion coefficient 1 
in Figs. 6 and 7, respectively. Dashed lines represent 
the case of Er = 0, in which the inertia effect is com- 
pletely neglected. Note that the case of Darcy’s law 
(y = Er = 0) for a horizontal surface was considered 
by Hsu et al. [I] for natural convection and by Hsu 
and Cheng [7] for mixed convection. For y = Er = 0, 
the present results are in good agreement with those 
of refs. [I, 71. The numerical values of Ra: and k* for 
selected values of Lj, y and Er are also listed in Table 
I for future reference. The results indicate that the 
thermal dispersion effect tends to stabilize the flow, 
while the inertia effect tends to destabilize it. It is 

- - Er.0 
- Er = 0.05 

y’Er.0 Darcy low C I.71 

01 I I I 
0 0.1 0.2 0.3 

Y  

FIG. 7. Critical wave number as a function of y  for various 
values of <. 
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Table I. The critical Rayleigh and wave number for selected 
values of 5, y and Er with Rn, = 20 

Rd k* 

t I’ Er = 0.05 Er = 0 Er = 0.05 Er = 0 

0 0 50.2 I 59.57 
0.15 84.31 101.82 
0.3 118.34 145.8 I 

I 0 92.12 104.35 
0.15 165.89 198.04 
0.3 226.42 290.16 

5 0 181.33 190.74 
0.15 344.19 378.30 
0.3 464.98 514.60 

IO 0 253.00 260.00 
0.15 534.45 512.26 
0.3 125.65 182.71 

0.7529 0.8065 
0.5994 0.6408 
0.5341 0.5750 

1.2415 I .3000 
0.8497 0.9069 
0.6901 0.7450 

I .9771 2.0308 
1.1750 I .2070 
0.9645 0.9942 

2.3500 2.4497 
I .3596 I .3836 
1.1000 1.1204 

interesting to note that the variation of the critical 
Rayleigh number RN.: vs the thermal dispersion 
coefficient y  exhibits an almost linear function. It is 
also seen that the critical Rayleigh number Ra,: is a 
strong function of the mixed convection parameter 5. 
The larger the values of 5, the more stable is the flow 
for the vortex instability. It is apparent from Fig. 7 
that when either y  or Er increases, the critical wave 
number k* decreases. A close look at Figs. 6 and 7 
indicates that the thermal dispersion effect is more 
pronounced as the mixed convection parameter 5 
increases. For 5 = 0 (natural convection), the devi- 
ation of the critical Rayleigh number from that for 
Darcy flow is about 41.5% for y  = 0.15, while for 
l = IO (mixed convection), the deviation is up to 
105.6% for y  = 0.15. 

5. CONCLUSIONS 

The thermal dispersion and inertia effects on the 
vortex instability of horizontal mixed convection 
boundary layer flow in a saturated porous medium 
have been examined by a linear stability theory. The 
numerical results demonstrate that the thermal dis- 
persion effect enhances the heat transfer rate and sta- 
bilizes the flow, while for the inertia effect the opposite 
trend is true. It is shown that the thermal dispersion 
effect is more pronounced as the mixed convection 
parameter 5 increases. Moreover, it is found that the 
flow is less susceptible to the vortex instability for 
higher values of mixed convection parameter 5 and 
thus aided mixed convection (5 > 0) is more stable 
than free convection (5 = 0). 
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